skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boyle, Elette"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aggarwal, Divesh (Ed.)
    Topology-hiding broadcast (THB) enables parties communicating over an incomplete network to broadcast messages while hiding the network topology from within a given class of graphs. Although broadcast is a privacy-free task, it is known that THB for certain graph classes necessitates computational assumptions, even against "honest but curious" adversaries, and even given a single corrupted party. Recent works have tried to understand when THB can be obtained with information-theoretic (IT) security (without cryptography or setup assumptions) as a function of properties of the corresponding graph class. We revisit this question through a case study of the class of wheel graphs and their subgraphs. The nth wheel graph is established by connecting n nodes who form a cycle with another "center" node, thus providing a natural extension that captures and enriches previously studied graph classes in the setting of IT-THB. We present a series of new findings in this line. We fully characterize feasibility of IT-THB for any class of subgraphs of the wheel, each possessing an embedded star (i.e., a well-defined center connected to all other nodes). Our characterization provides evidence that IT-THB feasibility may correlate with a more fine-grained degree structure - as opposed to pure connectivity - of the corresponding graphs. We provide positive results achieving perfect IT-THB for new graph classes, including ones where the number of nodes is unknown. Further, we provide the first feasibility of IT-THB on non-degenerate graph-classes with t > 1 corruptions, for the class of friendship graphs (Erdös, Rényi, Sós '66). 
    more » « less
  2. Rothblum, Guy N; Wee, Hoeteck (Ed.)
    The field of distributed certification is concerned with certifying properties of distributed networks, where the communication topology of the network is represented as an arbitrary graph; each node of the graph is a separate processor, with its own internal state. To certify that the network satisfies a given property, a prover assigns each node of the network a certificate, and the nodes then communicate with one another and decide whether to accept or reject. We require soundness and completeness: the property holds if and only if there exists an assignment of certificates to the nodes that causes all nodes to accept. Our goal is to minimize the length of the certificates, as well as the communication between the nodes of the network. Distributed certification has been extensively studied in the distributed computing community, but it has so far only been studied in the information-theoretic setting, where the prover and the network nodes are computationally unbounded. In this work we introduce and study computationally bounded distributed certification: we define locally verifiable distributed SNARGs (LVD-SNARGs), which are an analog of SNARGs for distributed networks, and are able to circumvent known hardness results for information-theoretic distributed certification by requiring both the prover and the verifier to be computationally efficient (namely, PPT algorithms). We give two LVD-SNARG constructions: the first allows us to succinctly certify any network property in P, using a global prover that can see the entire network; the second construction gives an efficient distributed prover, which succinctly certifies the execution of any efficient distributed algorithm. Our constructions rely on non-interactive batch arguments for NP (BARGs) and on RAM-SNARGs, which have recently been shown to be constructible from standard cryptographic assumptions. 
    more » « less
  3. Oshman, Rotem (Ed.)
    Broadcast protocols enable a set of n parties to agree on the input of a designated sender, even in the face of malicious parties who collude to attack the protocol. In the honest-majority setting, a fruitful line of work harnessed randomization and cryptography to achieve low-communication broadcast protocols with sub-quadratic total communication and with "balanced" sub-linear communication cost per party. However, comparatively little is known in the dishonest-majority setting. Here, the most communication-efficient constructions are based on the protocol of Dolev and Strong (SICOMP '83), and sub-quadratic broadcast has not been achieved even using randomization and cryptography. On the other hand, the only nontrivial ω(n) communication lower bounds are restricted to deterministic protocols, or against strong adaptive adversaries that can perform "after the fact" removal of messages. We provide communication lower bounds in this space, which hold against arbitrary cryptography and setup assumptions, as well as a simple protocol showing near tightness of our first bound. - Static adversary. We demonstrate a tradeoff between resiliency and communication for randomized protocols secure against n-o(n) static corruptions. For example, Ω(n⋅ polylog(n)) messages are needed when the number of honest parties is n/polylog(n); Ω(n√n) messages are needed for O(√n) honest parties; and Ω(n²) messages are needed for O(1) honest parties. Complementarily, we demonstrate broadcast with O(n⋅polylog(n)) total communication and balanced polylog(n) per-party cost, facing any constant fraction of static corruptions. - Weakly adaptive adversary. Our second bound considers n/2 + k corruptions and a weakly adaptive adversary that cannot remove messages "after the fact." We show that any broadcast protocol within this setting can be attacked to force an arbitrary party to send messages to k other parties. Our bound implies limitations on the feasibility of balanced low-communication protocols: For example, ruling out broadcast facing 51% corruptions, in which all non-sender parties have sublinear communication locality. 
    more » « less
  4. This paper introduces arithmetic sketching, an abstraction of a primitive that several previous works use to achieve lightweight, low-communication zero-knowledge verification of secret-shared vectors. An arithmetic sketching scheme for a language L ⊆ F^n consists of (1) a randomized linear function compressing a long input x to a short “sketch,” and (2) a small arithmetic circuit that accepts the sketch if and only if x ∈ L, up to some small error. If the language L has an arithmetic sketching scheme with short sketches, then it is possible to test membership in L using an arithmetic circuit with few multiplication gates. Since multiplications are the dominant cost in protocols for computation on secret-shared, encrypted, and committed data, arithmetic sketching schemes give rise to lightweight protocols in each of these settings. Beyond the formalization of arithmetic sketching, our contributions are: – A general framework for constructing arithmetic sketching schemes from algebraic varieties. This framework unifies schemes from prior work and gives rise to schemes for useful new languages and with improved soundness error. – The first arithmetic sketching schemes for languages of sparse vectors: vectors with bounded Hamming weight, bounded L1 norm, and vectors whose few non-zero values satisfy a given predicate. – A method for “compiling” any arithmetic sketching scheme for a language L into a low-communication malicious-secure multi-server protocol for securely testing that a client-provided secret-shared vector is in L. We also prove the first nontrivial lower bounds showing limits on the sketch size for certain languages (e.g., vectors of Hamming-weight one) and proving the non-existence of arithmetic sketching schemes for others (e.g., the language of all vectors that contain a specific value). 
    more » « less